972 resultados para osteoclast differentiation factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: The inflammation-resolving lipid mediator resolvin E1 (RvE1) effectively stops inflammation-induced bone loss in vivo in experimental periodontitis. It was of interest to determine whether RvE1 has direct actions on osteoclast (OC) development and bone resorption. Experimental approach: Primary OC cultures derived from mouse bone marrow were treated with RvE1 and analysed for OC differentiation, cell survival and bone substrate resorption. Receptor binding was measured using radiolabelled RvE1. Nuclear factor (NF)-kappa B activation and Akt phosphorylation were determined with western blotting. Lipid mediator production was assessed with liquid chromatography tandem mass spectrometry. Key results: OC growth and resorption pit formation were markedly decreased in the presence of RvE1. OC differentiation was inhibited by RvE1 as demonstrated by decreased number of multinuclear OC, a delay in the time course of OC development and attenuation of receptor activator of NF-kappa B ligand-induced nuclear translocation of the p50 subunit of NF-kappa B. OC survival and apoptosis were not altered by RvE1. Messenger RNA for both receptors of RvE1, ChemR23 and BLT(1) is expressed in OC cultures. Leukotriene B(4) (LTB(4)) competed with [(3)H] RvE1 binding on OC cell membrane preparations, and the LTB(4) antagonist U75302 prevented RvE1 inhibition of OC growth, indicating that BLT(1) mediates RvE1 actions on OC. Primary OC synthesized the RvE1 precursor 18R-hydroxy-eicosapentaenoic acid and LTB(4). Co-incubation of OC with peripheral blood neutrophils resulted in transcellular RvE1 biosynthesis. Conclusions and implications: These results indicate that RvE1 inhibits OC growth and bone resorption by interfering with OC differentiation. The bone-sparing actions of RvE1 are in addition to inflammation resolution, a direct action in bone remodelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodontal disease (PD) is a chronic inflammatory and alveolar bone destructive disease triggered by microorganisms from the oral biofilm. Oral inoculation of mice with the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) induces marked alveolar bone loss and local production of inflammatory mediators, including Macrophage Migration Inhibitory Factor (MW). The role of MW for alveolar bone resorption during PD is not known. In the present study, experimental PD was induced in BALB/c wild-type mice (WT) and MW knockout mice (MIF-/-) through oral inoculation of Aa. Despite enhanced number of bacteria, MIF-/- mice had reduced infiltration of TRAP-positive cells and reduced alveolar bone loss. This was associated with decreased neutrophil accumulation and increased levels of IL-10 in periodontal tissues. TNF-alpha production was similar in both groups. In vitro, LPS from Aa enhanced osteoclastic activity in a MIF-dependent manner. In conclusion, MIF has role in controlling bacterial growth in the context of PD but contributes more significantly to the progression of bone loss during PD by directly affecting differentiation and activity of osteoclasts. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regulation of osteoclast differentiation in the bone microenvironment is critical for normal bone remodeling, as well as for various human bone diseases. Over the last decade, our knowledge of how osteoclast differentiation occurs has progressed rapidly. We highlight some of the major advances in understanding how cell signaling and transcription are integrated to direct the differentiation of this cell type. These studies used genetic, molecular, and biochemical approaches. Additionally, we summarize data obtained from studies of osteoclast differentiation that used the functional genomic approach of global gene profiling applied to osteoclast differentiation. This genomic data confirms results from studies using the classical experimental approaches and also may suggest new modes by which osteoclast differentiation and function can be modulated. Two conclusions that emerge are that osteoclast differentiation depends on a combination of fairly ubiquitously expressed transcription factors rather than unique osteoclast factors, and that the overlay of cell signaling pathways on this set of transcription factors provides a powerful mechanism to fine tune the differentiation program in response to the local bone microenvironment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased osteoclast (OC) bone resorption and/or decreased osteoblast (OB) bone formation contribute to bone loss in osteoporosis and rheumatoid arthritis (RA). Findings of the basic and translational research presented in this thesis demonstrate a number of mechanisms by which cytokine-induced NF-κB activation controls bone resorption and formation: 1) Tumour necrosis factor-α (TNF) expands pool of OC precursors (OCPs) by promoting their proliferation through stimulation of the expression of macrophage colony stimulating factor (M-CSF) receptor, c-Fms, and switching M-CSF-induced resident (M2) to inflammatory (M1) macrophages with enhanced OC forming potential and increased production of inflammatory factors through induction of NF-κB RelB; 2) Similar to RANKL, TNF sequentially activates transcriptional factors NF-κB p50 and p52 followed by c-Fos and then NFATc1 to induce OC differentiation. However, TNF alone induces very limited OC differentiation. In contrast, it pre-activates OCPs to express cFos which cooperates with interleukin-1 (IL-1) produced by these OCPs in an autocrine mechanism by interacting with bone matrix to mediate the OC terminal differentiation and bone resorption from these pre-activated OCPs. 3) TNF-induced OC formation is independent of RANKL but it also induces NF-κB2 p100 to limit OC formation and bone resorption, and thus p100 deletion accelerates joint destruction and systemic bone loss in TNF-induced RA; 4) TNF receptor associated factor-3 (TRAF3) limits OC differentiation by negatively regulating non-canonical NF-κB activation and RANKL induces TRAF3 ubiquitination and lysosomal degradation to promote OC differentiation. Importantly, a lysosomal inhibitor that inhibits TRAF3 degradation prevents ovariectomy-induced bone loss; 5) RelB and Notch NICD bind RUNX2 to inhibit OB differentiation and RelB:p52 dimer association with NICD inhibit OB differentiation by enhancing the binding of RBPjκ to Hes1. These findings suggest that non-canonical NF- κB signaling could be targets to develop new therapies for RA or osteoporosis. For example 1) Agents that degrade TNF-induced RelB could block M1 macrophage differentiation to inhibit inflammation and joint destruction for the therapy of RA; 2)Agents that prevent p100 processing or TRAF3 degradation could inhibit bone resorption and also stimulate bone formation simultaneously for the therapy of osteoporosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: An imbalance between bone formation and bone resorption is thought to underlie the pathogenesis of reduced bone mass in osteoporosis. Bone resorption is carried out by osteoclasts, which are formed from marrow-derived cells that circulate in the monocyte fraction. Ihe aim of this study was to determine the role of osteoclast formation in the pathogenesis of bone loss in osteoporosis. Methods: The proportion of circulating osteoclast precursors and their relative sensitivity to the osteoclastogenic effects of M-CSF, 1,25(OH)2D3 and RANKL were assessed in primary osteoporosis patients and normal controls. Results: Although there was no difference in the number of circulating osteoclast precursors in osteoporosis patients and normal controls, osteoclasts formed from osteoporosis patients exhibited substantially increased resorptive activity relative to normal controls. Although no increased sensitivity to the osteoclastogenic effects of 1,25(OH)2D3 or M-CSF was noted, increased bone resorption was found in osteoporosis peripheral blood mononuclear cell (PBMC) cultures to which these factors were added. Conclusion: Our findings suggest that osteoclast functional activity rather than formation is increased in primary involutional osteoporosis and that dexamethasone acts to increase osteoclast formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the ovary, two new members of the large TGF-beta superfamily of growth factors were discovered in the 1990s. The oocyte was shown to express two closely related growth factors that were named growth differentiation factor 9 (GDF-9) and growth differentiation factor 9B (GDF-9B). Both of these proteins are required for normal ovarian follicle development although their individual significance varies between species. GDF-9 and GDF-9B mRNAs are expressed in the human oocytes from the primary follicle stage onwards. This thesis project was aimed to define the signalling mechanisms utilized by the oocyte secreted GDF-9. We used primary cultures of human granulosa luteal cells (hGL) as our cell model, and recombinant adenovirus-mediated gene transfer in manipulating the TGF-b family signalling cascade molecules in these cells. Overexpression of the constitutively active forms of the seven type I receptors, the activin receptor-like kinases 1-7 (ALK1-7), using recombinant adenoviruses caused a specific activation of either the Smad1 or Smad2 pathway proteins depending on the ALK used. Activation of both Smad1 and Smad2 proteins also stimulated the expression of dimeric inhibin B protein in hGL cells. Treatment with recombinant GDF-9 protein induced the specific activation of the Smad2 pathway and stimulated the expression of inhibin betaB subunit mRNA as well as inhibin B protein secretion in our cell model. Recombinant GDF-9 also activated the Smad3-responsive CAGA-luciferase reported construct, and the GDF-9 response in hGL cells was markedly potentiated upon the overexpression of Alk5 by adenoviral gene transduction. Alk5 overexpression also enhanced the GDF-9 induced inhibin B secretion by these cells. Similarly, in a mouse teratocarcinoma cell line P19, GDF-9 could activate the Smad2/3 pathway, and overexpression of ALK5 in COS7 cells rendered them responsive to GDF-9. Furthermore, transfection of rat granulosa cells with small interfering RNA for ALK5 or overexpression of the inhibitory Smad7 resulted in dose-dependent suppression of GDF-9 effects. In conclusion, this thesis shows that both Smad1 and Smad2 pathways are involved in controlling the regulation of inhibin B secretion. Therefore, in addition to endocrine control of inhibin production by the pituitary gonadotropins, also local paracrine factors within in the ovary, like the oocyte-derived growth factors, may contribute to controlling inhibin secretion. This thesis shows as well that like other TGF-beta family ligands, also GDF-9 signalling is mediated by the canonical type I and type II receptors with serine/threonine kinase activity, and the intracellular transcription factors, the Smads. Although GDF-9 binds to the BMP type II receptor, its downstream actions are specifically mediated by the type I receptor, ALK5, and the Smad2 and Smad3 proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myeloid differentiation factor 88 (MyD88) is a universal and essential adapter for the TLR/IL-1R family. In this report, the first mollusk Myd88 ortholog (named as CfMyd88) was cloned from Zhikong scallop (Chlamys farreri). The full-length cDNA of CfMyd88 was of 1554 bp, including a 5 '-terminal untranslated region (UTR) of 427 bp, a polyA tail, and an open reading frame (ORF) of 1104 bp encoding a polypeptide of 367 amino acids containing the typical TLR and IL-1R-related (TIR) domain and death domain (DD). Homology analysis revealed that the predicted amino acid sequence of CfMyd88 was homologous to a variety of previously identified Myd88s with more than 30% identity. The temporal expressions of CfMyd88 mRNA in the mixed primary cultured haemocytes stimulated by lipopolysaccharide (LPS) and peptidoglycans (PGN) were measured by real-time RT-PCR system. The mRNA expression of CfMyd88 decreased after stimulation with both LPS and PGN, and the lowest level was about 1/3 times (at 6 h) and 1/10 times (at 9 h) to that in the control group, respectively. The expression then recovered and was upregulated to two-fold at 9 h after LPS stimulation or to the original level at 12 It after PGN stimulation. The results suggest that the MyD88-dependent signaling pathway exists in scallop and was involved in the defense system. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth differentiation factor-5 (GDF-5) is a member of the transforming growth factor-β superfamily, a family of proteins that play diverse roles in many aspects of cell growth, proliferation and differentiation. GDF-5 has also been shown to be a trophic factor for embryonic midbrain dopaminergic neurons in vitro (Krieglstein et al. 1995) and after transplantation to adult rats in vivo (Sullivan et al. 1998). GDF-5 has also been shown to have neuroprotective and neurorestorative effects on adult dopaminergic neurons in the substantia nigra in animal models of Parkinson’s disease (Sullivan et al. 1997, 1999; Hurley et al. 2004). This experimental evidence has lead to GDF-5 being proposed as a neurotrophic factor with potential for use in the treatment of Parkinson’s disease. However, it is not know if GDF-5 is expressed in the brain and whether it plays a role in dopaminergic neuron development. The experiments presented here aim to address these questions. To that end this thesis is divided into five separate studies each addressing a particular question associated with GDF-5 and its expression patterns and roles during the development of the rat midbrain. Expression of the GDF-5 in the developing rat ventral mesencephalon (VM) was found to begin at E12 and peak on E14, the day that dopaminergic neurons undergo terminal differentiation. In the adult rat, GDF-5 was found to be restricted to heart and brain, being expressed in many areas of the brain, including striatum and midbrain. This indicated a role for GDF-5 in the development and maintenance of dopaminergic neurons. The appropriate receptors for GDF-5 (BMPR-II and BMPR-Ib) were found to be expressed at high levels in the rat VM at E14 and BMPR-II expression was demonstrated on dopaminergic neurons in the E13 mouse VM. GDF-5 resulted in a three-fold increase in the numbers of dopaminergic neurons in cultures of E14 rat VM, without affecting the numbers of neurones or total cells. GDF-5 was found to increase the proportion of neurons that were dopaminergic. The numbers of Nurr1-positive cells were not affected by GDF-5 treatment, but GDF-5 did increase the numbers of Nurr1- positive cells that expressed tyrosine hydroxylase (TH). Taken together this data indicated that GDF-5 increases the conversion of Nurr1-positive, TH-negative cells to Nurr1-positive, TH-positive cells. In GDF-5 treated cultures, total neurite length, neurite arborisation and somal area of dopaminergic were all significantly increased compared to control cultures. Thus this study showed that GDF-5 increased the numbers and morphological differentiation of VM dopaminergic neurones in vitro. In order to examine if GDF-5 could induce a dopaminergic phenotype in neural progenitor cells, neurosphere cultures prepared from embryonic rat VM were established. The effect of the gestational age of the donor VM on the proportion of cell types generated from neurospheres from E12, E13 and E14 VM was examined. Dopaminergic neurons could only be generated from neurospheres which were prepared from E12 VM. Thus in subsequent studies the effect of GDF-5 on dopaminergic induction was examined in progentior cell cultures prepared from the E12 rat VM. In primary cultures of E12 rat VM, GDF-5 increased the numbers of TH-positive cells without affecting the proliferation or survival of these cells. In cultures of expanded neural progenitor cells from the E12 rat VM, GDF-5 increased the expression of Nurr1 and TH, an action that was dependent on signalling through the BMPR-Ib receptor. Taken together, these experiments provide evidence that GDF-5 is expressed in the developing rat VM, is involved in both the induction of a dopaminergic phenotype in cells of the VM and in the subsequent morphological development of these dopaminergic neurons

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of dendritic cells (DC) by microbial products via Toll-like receptors (TLR) is instrumental in the induction of immunity. In particular, TLR signaling plays a major role in the instruction of Th1 responses. The development of Th2 responses has been proposed to be independent of the adapter molecule myeloid differentiation factor 88 (MyD88) involved in signal transduction by TLRs. In this study we show that flagellin, the bacterial stimulus for TLR5, drives MyD88-dependent Th2-type immunity in mice. Flagellin promotes the secretion of IL-4 and IL-13 by Ag-specific CD4(+) T cells as well as IgG1 responses. The Th2-biased responses are associated with the maturation of DCs, which are shown to express TLR5. Flagellin-mediated DC activation requires MyD88 and induces NF-kappaB-dependent transcription and the production of low levels of proinflammatory cytokines. In addition, the flagellin-specific response is characterized by the lack of secretion of the Th1-promoting cytokine IL-12 p70. In conclusion, this study suggests that flagellin and, more generally, TLR ligands can control Th2 responses in a MyD88-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoclasts and macrophages share progenitors that must receive decisive lineage signals driving them into their respective differentiation routes. Macrophage colony stimulation factor M-CSF is a common factor; bone is likely the stimulus for osteoclast differentiation. To elucidate the effect of both, shared mouse bone marrow precursor myeloid blast was pre-cultured with M-CSF on plastic and on bone. M-CSF priming prior to stimulation with M-CSF and osteoclast differentiation factor RANKL resulted in a complete loss of osteoclastogenic potential without bone. Such M-CSF primed cells expressed the receptor RANK, but lacked the crucial osteoclastogenic transcription factor NFATc1. This coincided with a steeply decreased expression of osteoclast genes TRACP and DC-STAMP, but an increased expression of the macrophage markers F4/80 and CD11b. Compellingly, M-CSF priming on bone accelerated the osteoclastogenic potential: M-CSF primed cells that had received only one day M-CSF and RANKL and were grown on bone already expressed an array of genes that are associated with osteoclast differentiation and these cells differentiated into osteoclasts within 2 days. Osteoclastogenesis-insensitive precursors grown in the absence of bone regained their osteoclastogenic potential when transferred to bone. This implies that adhesion to bone dictates the fate of osteoclast precursors. Common macrophage-osteoclast precursors may become insensitive to differentiate into osteoclasts and regain osteoclastogenesis when bound to bone or when in the vicinity of bone. J. Cell. Physiol. 229: 210-225, 2014. (c) 2014 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The myeloid differentiation factor 88 (MyD88) plays a pivotal role in Toll-like receptor (TLR)- and interleukin-1 receptor (IL-1R)-induced osteoclastogenesis. We examined the role of MyD88 on p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation and nucleotide-binding oligomerization domain (Nod) induction by lipopolysaccharide (LPS) and IL-1 beta, and their effect on receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) production in bone marrow stromal cell (BMSC). RANKL, Nod1, Nod2, NF-κB, and p38 protein levels were determined by Western blot. Nod2 was stimulated with muramyl dipeptide (MDP) prior to TLR4 stimulation with LPS. MyD88 deficiency markedly inhibited RANKL expression after LPS stimulation and increased OPG messenger RNA (mRNA) production. Also, MyD88 was necessary for NF-κB and p38 MAPK activation. MDP alone did not induce RANKL and OPG expressions; however, when combined with LPS, their expressions were significantly increased (p < 0.05). Our results support that MyD88 signaling has a pivotal role in osteoclastogenesis thought NF-κB and p38 activation. Nod2 and especially Nod1 levels were influenced by MyD88.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is evidence that mesenchymal stem cells (MSCs) can differentiate towards an intervertebral disc (IVD)-like phenotype. We compared the standard chondrogenic protocol using transforming growth factor beta-1 (TGFß) to the effects of hypoxia, growth and differentiation factor-5 (GDF5), and coculture with bovine nucleus pulposus cells (bNPC). The efficacy of molecules recently discovered as possible nucleus pulposus (NP) markers to differentiate between chondrogenic and IVD-like differentiation was evaluated. MSCs were isolated from human bone marrow and encapsulated in alginate beads. Beads were cultured in DMEM (control) supplemented with TGFß or GDF5 or under indirect coculture with bNPC. All groups were incubated at low (2 %) or normal (20 %) oxygen tension for 28 days. Hypoxia increased aggrecan and collagen II gene expression in all groups. The hypoxic GDF5 and TGFß groups demonstrated most increased aggrecan and collagen II mRNA levels and glycosaminoglycan accumulation. Collagen I and X were most up-regulated in the TGFß groups. From the NP markers, cytokeratin-19 was expressed to highest extent in the hypoxic GDF5 groups; lowest expression was observed in the TGFß group. Levels of forkhead box F1 were down-regulated by TGFß and up-regulated by coculture with bNPC. Carbonic anhydrase 12 was also down-regulated in the TGFß group and showed highest expression in the GDF5 group cocultured with bNPC under hypoxia. Trends in gene expression regulation were confirmed on the protein level using immunohistochemistry. We conclude that hypoxia and GDF5 may be suitable for directing MSCs towards the IVD-like phenotype.